Advertisement
JOGC

Physical Activity and Weight Gain Throughout Pregnancy Are Associated With Umbilical Cord Markers

Published:October 07, 2022DOI:https://doi.org/10.1016/j.jogc.2022.09.012

      Abstract

      Objective

      Maternal serum and umbilical cord (UC) lipid and glucose levels are influenced by a variety of maternal factors over the course of pregnancy, including maternal physical activity (PA) levels and gestational weight gain (GWG). However, previous research has not assessed the interaction of these 2 variables. This study investigated mid-gestation (24–28 weeks) and late gestation (34–38 weeks) maternal and UC serum lipid and glucose profiles in relation to maternal PA status and GWG, independently and in combination.

      Methods

      This study had a longitudinal design. Pregnant participants (n = 40) were categorized as active or inactive based on the 2019 Canadian Guideline for Physical Activity throughout Pregnancy, and GWG was categorized as insufficient, appropriate, or excessive based on 2009 Institute of Medicine recommendations. Fasting maternal serum was taken in mid- and late gestation, and venous UC serum was taken at birth.

      Results

      No relationship was found between maternal serum values and PA and/or GWG. Infants born to individuals who were physically active across pregnancy, or who were active in mid-pregnancy and had their activity status drop in late gestation, had lower UC total cholesterol levels than those who were inactive throughout pregnancy (P < 0.0001). Participants who had gained weight appropriately at mid-gestation had significantly lower UC glucose levels than those who gained weight insufficiently (P = 0.040) or excessively (P = 0.021).

      Conclusion

      In our study, PA, and GWG (independently and in combination) may not have affected maternal serum; however, meeting PA recommendations at mid-gestation may provide prophylactic effects on UC serum, potentially providing long-term health benefits to the newborn.

      Résumé

      Objectif

      La lipidémie et la glycémie du sang maternel et du sang de cordon sont influencées par divers facteurs maternels tout au long de la grossesse, notamment le niveau d’activité physique maternelle (APM) et le gain de poids gestationnel (GPG). Cependant, aucune recherche n’a encore évalué l’interaction entre ces deux variables. Cette étude examine les bilans lipidiques et glycémiques à mi-grossesse (24–28 SA) et en fin de grossesse (34–38 SA) par rapport au niveau d’APM et au GPG, pris indépendamment et en association.

      Méthodologie

      Cette étude a été menée selon un modèle longitudinal. Les participantes enceintes (n = 40) ont été classées actives ou inactives d’après l’édition 2019 des Directives canadiennes en matière d’activité physique pendant la grossesse, et le GPG a été classé insuffisant, adéquat ou excessif d’après les recommandations de 2009 de l’Institute of Medicine. Un prélèvement de sang maternel a été réalisé à jeun à mi-grossesse et en fin de grossesse, et un prélèvement de sang de cordon veineux a été effectué à la naissance.

      Résultats

      Aucune association n’a été établie entre les valeurs sériques maternelles et le niveau d’APM et/ou le GPG. Chez les nourrissons nés de mères physiquement actives tout au long de la grossesse ou actives à mi-grossesse avec une diminution d’activité en fin de grossesse, la cholestérolémie au sang de cordon était plus faible que chez ceux nés de mères inactives tout au long de la grossesse (P < 0,0001). Les participantes ayant un GPG adéquat à mi-grossesse présentaient une plus faible glycémie au sang de cordon que celles ayant un GPG insuffisant (P = 0,040) ou excessif (P = 0,021).

      Conclusion

      Dans notre étude, le niveau d’APM et le GPG (indépendamment et en association) n’ont peut-être pas eu d’effet sur les valeurs sériques maternelles; toutefois, le respect des recommandations d’APM à mi-grossesse pourrait avoir un effet prophylactique sur les valeurs au sang de cordon et possiblement apporter des bienfaits à long terme pour la santé du nouveau-né.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Obstetrics and Gynaecology Canada
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mottola M.F.
        • Davenport M.H.
        • Ruchat S.M.
        • et al.
        No. 367-2019 Canadian guideline for physical activity throughout pregnancy.
        J Obstet Gynaecol Canada. 2018; 40: 1528-1537
        • Clark E.
        • Isler C.
        • Strickland D.
        • et al.
        Influence of aerobic exercise on maternal lipid levels and offspring morphometrics.
        Int J Obes. 2019; 43: 594-602
        • Liu K.
        • Ye K.
        • Han Y.
        • et al.
        Maternal and cord blood fatty acid patterns with excessive gestational weight gain and neonatal macrosomia.
        Asia Pac J Clin Nutr. 2017; 26: 291-297
        • Collings P.J.
        • Farrar D.
        • Gibson J.
        • et al.
        Maternal physical activity and neonatal cord blood lipid levels: findings from a prospective pregnancy cohort.
        J Phys Act Heal. 2020; 17: 236-241
        • LaBarre J.L.
        • Puttabyatappa M.
        • Song P.X.K.
        • et al.
        Maternal lipid levels across pregnancy impact the umbilical cord blood lipidome and infant birth weight.
        Sci Rep. 2020; 10: 1-15
        • Woo Baidal J.A.
        • Locks L.M.
        • Cheng E.R.
        • et al.
        Risk factors for childhood obesity in the first 1,000 days: a systematic review.
        Am J Prev Med. 2016; 50: 761-779
        • Evenson K.R.
        • Moos M.-K.
        • Carrier K.
        • et al.
        Perceived barriers to physical activity among pregnant women.
        Matern Child Health J. 2009; 13: 364-375
        • Suzuki K.
        The developing world of DOHaD.
        J Dev Orig Health Dis. 2018; 9: 266-269
        • Ahmad A.
        • Isherwood C.
        • Umpleby M.
        • et al.
        Effects of high and low sugar diets on cardiovascular disease risk factors.
        J Nutr Sci Vitaminol (Tokyo). 2020; 66: S18-S24
        • Harris W.S.
        Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review.
        J Lipid Res. 1989; 30: 785-807
        • Crouter S.E.
        • DellaValle D.M.
        • Horton M.
        • et al.
        Validity of the Actical for estimating free-living physical activity.
        Eur J Appl Physiol. 2011; 111: 1381-1389
        • Colley R.C.
        • Garriguet D.
        • Janssen I.
        • et al.
        Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey.
        Heal Rep. 2011; 22: 7-14
        • da Silva D.F.
        • Mohammad S.
        • Nagpal T.S.
        • et al.
        How many valid days are necessary to assess physical activity data from accelerometry during pregnancy?.
        J Phys Act Heal. 2021; 18: 337-344
        • IOM (Institute of Medicine)
        Weight gain during pregnancy: reexamine the guideline.
        Natl Acad Press, Washington, DC2009
        • Kirkpatrick S.I.
        • Subar A.F.
        • Douglass D.
        • et al.
        Performance of the automated self-administered 24-hour recall relative to a measure of true intakes and to an interviewer-administered 24-h recall.
        Am J Clin Nutr. 2014; 100: 233-240
        • Blanca M.
        • Alarcón R.
        • Arnau J.
        • et al.
        Non-normal data: is ANOVA still a valid option?.
        Psicothema. 2017; 29: 552-557
        • Sterne J.
        • White I.
        • Carlin J.
        • et al.
        Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls.
        BMJ. 2009; 338: b2393
        • Solis-Paredes M.
        • Espino Y.
        • Sosa S.
        • Estrada-Gutierrez G.
        • et al.
        Maternal and fetal lipid and adipokine profiles and their association with obesity.
        Int J Endocrinol. 2016; 20167015626
        • Geraghty A.A.
        • Alberdi G.
        • O’Sullivan E.J.
        • et al.
        Maternal and fetal blood lipid concentrations during pregnancy differ by maternal body mass index: findings from the ROLO study.
        BMC Pregnancy Childbirth. 2017; 17: 4-10
        • Davenport M.H.
        • Ruchat S.M.
        • Poitras V.J.
        • et al.
        Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis.
        Br J Sports Med. 2018; 52: 1367-1375
        • Jr W.W.H.
        Placental-fetal glucose exchange and fetal glucose metabolism.
        Trans Am Clin Climatol Assoc. 2006; 117 (discussion 339–40): 321-339
        • Davenport M.H.
        • Ruchat S.M.
        • Giroux I.
        • et al.
        Timing of excessive pregnancy-related weight gain and offspring adiposity at birth.
        Obstet Gynecol. 2013; 122: 255-261
        • Gaccioli F.
        • Lager S.
        • Powell T.L.
        • et al.
        Placental transport in response to altered maternal nutrition.
        J Dev Orig Health Dis. 2013; 4: 101-115
        • Gou B.H.
        • Guan H.M.
        • Bi Y.X.
        • et al.
        Gestational diabetes: weight gain during pregnancy and its relationship to pregnancy outcomes.
        Chin Med J (Engl). 2019; 132: 154-160
        • Bianchi C.
        • de Gennaro G.
        • Romano M.
        • et al.
        Pre-pregnancy obesity, gestational diabetes or gestational weight gain: which is the strongest predictor of pregnancy outcomes?.
        Diabetes Res Clin Pract. 2018; 144: 286-293
        • Carr B.R.
        • Simpson E.R.
        Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins.
        Am J Obstet Gynecol. 1984; 150: 551-557
        • Bhattacharjee J.
        • Mohammad S.
        • Adamo K.B.
        Does exercise during pregnancy impact organs or structures of the maternal-fetal interface?.
        Tissue Cell. 2021; 72101543
        • Blaton V.
        How is the metabolic syndrome related to the dyslipidemia?.
        EJIFFC. 2007; 18: 15-22
        • Guérin E.
        • Ferraro Z.M.
        • Adamo K.B.
        • et al.
        The need to objectively measure physical activity during pregnancy: considerations for clinical research and public health impact.
        Matern Child Health J. 2018; 22: 637-641
        • Wolever T.M.S.
        • Brand Miller J.
        Sugars and blood glucose control.
        Am J Clin Nutr. 1995; 62: 212S-221S
        • Ewers B.
        • Riserus U.
        • Marckmann P.
        Effects of unsaturated fat dietary supplements on blood lipids, and on markers of malnutrition and inflammation in hemodialysis patients.
        J Ren Nutr. 2009; 19: 401-411